
A Tutorial on SLAM and Navigation Problem
By Sylvain Dindy-Bolongo

1.0 Introduction

SLAM (Simultaneous Localization and Mapping) is the process by which a mobile robot can built a map

of an environment and at the same time use this map to determine its location[1]. At the beginning both

the map of the environment and the robot position are not known, the vehicle has a known kinematic

model, the environment within which the robot is moving is populated with artificial or natural

landmark. The vehicle is equipped with sensors capable of taking measurement of the relative position

between landmarks and the vehicle itself.

This tutorial is an overview of common techniques presently used to solve 3D SLAM.

2.0 SLAM Definition and Process

2.1 State Space Model

Let’s consider the problem where a robot is moving in an environment. Initially both the map and the

vehicle position are not known but the vehicle has known kinematic model and it is moving through the

unknown environment which is populated with artificial or natural landmark.

Figure 2.1 The essential SLAM Problem

The autonomous vehicle is moving as shown in Figure 2.1. At a time instant k , the following quantities

are defined:

:
kvx The state vector describing the location and orientation or pose of the vehicle

:
kvu The control applied at the time 1k to drive the vehicle to a state

kvx at the time k

:kz a measurement taken from the vehicle of the location of the ith landmark at the time k

The state of the system at a given moment k is modeled with the state of the vehicle
kvx which contains

the robot pose augmented by the 3D position of the landmark. Assuming that N landmarks have been

validated and incorporated into the system, then the vector of the landmark is denoted by kz see Figure

2.1.

 Tkkkkkkv zyxx
k

 TNNNk kkkkkk
zyxzyxp ...111 (2.1)

 Tkvk pxx
k

Landmark position is assumed to be constant i.e all landmarks are considered stationary that means

1 kk pp therefore the model for the evolution of the landmark does not contains any

uncertainties[4].

The augmented state vector containing the state of the vehicle and the state of all landmarks (2.1) is

then used to estimate a next state by means of the state transition model (2.2).

A state transition matrix kF , vector of control input
kvu and a vector of temporally uncorrelated process

noise kw with zero mean and with covariance kQ are used to model the motion of the vehicle through

the environment.

N

k

N

k

k

k

k

Nk

k

k

p

p

v

p

p

v

N

v

p

p

k

N

v

o

o

w

o

o

u

p

p

x

I

I

F

p

p

x

......

000

0......

0..0

0..0

..
111

1

1

1

11
 (2.2)

Where
ipI is an identity matrix of the size equal to the dimension of a landmark which is 3 for 3D

landmark and
ipo a 3D zero vector.

2.2 Measurement Model

The measurement model estimate the observation and is given by equation (2.3)

 kkkk vxHz (2.3)

 Matrix kH relates the output of a sensor to the state vector kx , a vector kv

for temporally uncorrelated observation, error with zero mean and covariance kR is used.

3.1 Kalman Filtering (KF)

Kalman filtering is a technique for filtering and predicting linear systems. It is widely used in the control

system community to solve stochastic control problem. In the framework of SLAM problem solution, this

filter is comprised of three main steps: prediction, observation and update, which keep repeating as the

time go by. The method can be described as follows:

a. In the prediction phase the vehicle kinematic model is used to provide an estimate of the state

vector 1
ˆ

kx , the covariance matrix 1
ˆ
kP and the measurement 1

ˆ
kz at the time 1k from the

state vector kx and the covariance matrix kP

b. During the measurement phase the innovation vector k as the difference between the real

and the estimated measurement and the associated covariance matrix are computed

c. During the update phase the matrix is used to compute the Kalman gain K. The gain K and the

covariance matrix are used in order to correct the state vector 1
ˆ

kx and the covariance

matrix 1
ˆ
kP into 1kx and 1kP . The overall process can be summarized as follows.

Kalman filtering Algorithm

I. Prediction

1. kkkk uxFx 1
ˆ

2. k

T

kkkk QFPFP 1
ˆ

3. 11
ˆˆ

 kkk xHz

II. Measurement Phase

4. 1kz is measured

5. 111
ˆ

 kkk zz

6. k

T

kkkk RHPH 11
ˆ

III. Update Phase

7.
1

111
ˆ

 k

T

kkk HPK

8. 1111
ˆ

 kkkk Kxx

9. 1111
ˆ)(kkkk PKIP

10. Iterate with 1kx and 1kP

Where kQ is the process covariance matrix and kR the measurement covariance matrix.

3.2 Extended Kalman Filtering (EKF)
The assumption of linear state transition and linear measurement with added Gaussian noise are rarely

fulfilled in practice. The motion and measurement equation are nonlinear in general.

Consider the nonlinear system described by the following equations:

kkkk

kkkk

vuxhz

wuxfx

),(

),(1
 (3.1)

Where (.)f models the kinematics and kw are additive zero mean uncorrelated Gaussian motion

disturbances with covariance kQ and where (.)h describe the geometry of the observation and kv

white Gaussian noise with covariance kR .

Equation (3.1) can be linearized along a given trajectory resulting in the Extended Kalman Filtering

method.

Defined the Jacobians
kf

J and
khJ as follows:

1

1

1

1

),(

),(

k

kk

h

k

kk

f

x

uxh
J

x

uxf
J

k

k

 (3.2)

A similar iterative process as described for the KF problem can be used and is summarized as follows:

Extended Kalman filtering Algorithm

I. Prediction

1.),(ˆ
11 kkk uxfx

2. k

T

fkfk QJPJP
kk
1

ˆ

3.)ˆ(ˆ
11 kk xhz

II. Measurement Phase

4. 1kz is measured

5. 111
ˆ

 kkk zz

6. k

T

hkhk RJPJ
kk
 11

ˆ

III. Update Phase

7. 1

111
ˆ

 k

T

hkk
k

JPK

8. 1111
ˆ

 kkkk Kxx

9. 1111
ˆ)(kkkk PKIP

10. Iterate with 1kx and 1kP

Where kQ is the process covariance matrix and kR the measurement covariance matrix.

3.3 Compressed Extended Kalman Filtering (CEKF)

The compressed Extended Kalman filtering is an implementation of the EKF where the computational

effort is reduced[4]. It takes advantage of the fact that large sequences of prediction and observation

step depend only on reduced set of states, because they are independent from most element in the

state vector, making unnecessary to perform a full SLAM update in local area.

The CEKF take advantage of this fact by working only over local regions, performing local SLAM with

those features that are in the vicinity of the vehicle independently of the size of the of the whole map

then a global update is conducted. The Algorithm is described as follows[4].

The robot environment is divided into two regions. A global region denoted B and a local region

denoted A and also called active region. This result in the partitioning of the state vector kx and the

covariance matrix kP into the active part
kax and

kaaP containing the vehicle state and landmark inside

the active region, and the passive part
kbx ,

kbbP and
kabP containing landmark outside the active region.

Note that, at the very beginning,
0ax will contain the vehicle state but no landmarks, and the

0bx will be

an empty entity. This partitioning is given as follows[4]:

bbba

abaa

b

a

PP

PP
P

x

x
x

The essence of CEKF algorithm is to perform EKF algorithm on ax and aaP . This is possible thanks to the

fact that the innovation matrix a and the Kalman gain aK for the local region A are independent from

the vector and matrices related to region B , i.e. bbb Px , and aP . The final output of this local SLAM is

then used to update the global x and P .

In order to perform this global update, the vector
kbx and the matrices

kbbP and
kabP must be also

updated. For this reason several auxiliary computations are added in the prediction and the update

stages, without interfering the local SLAM procedure, cost and final result. These extra computations

only generates auxiliary variables (, and), that accumulate the effect of each single iteration

during the local SLAM process. Define:

kkk II)(10

kk

T

kk 10

kkk aa

T

ha

T

kkk zJ 110 0 (3.4)

Where
kkk aa

T

ak JJ , kaak P and 0 a)dim(zero vector.

These variables are then used to update the value of vbx and bbP and abP to the global map.

kk abkab PP
1

kkkk abkabbbbb PPPP
1

kbavbvb kkk
Pxx

1

The CEKF algorithm is given as follows[4]:

CEKF Algorithm

1. Define actual active region

2. Define
kvax ,

kaaP and
kvbx ,

kabP and
kbbP

3. Initialize
kkkkk aaaaa uRQJP ,,, for the active region

4.
kvan xx

5.
kan PP

6.
kkkkkn anananhanfaf uuRRQQJJJJ ,,,,

7. 0,0, nnn I

8. Active Region Extended Kalman Filter

I Prediction

1.),(ˆ
11 nnn uxfx

2. n

T

fnfn QJPJP
nn
1

ˆ

3.)ˆ(ˆ
11 nn xhz

4. 0,0, nnn I

II. Measurement Phase

5. 1nz is measured

6. 111
ˆ

 nnn zz

7. n

T

hanhaa RJPJ
nnn
 1

ˆ
1

III. Update Phase

8. 1

111
ˆ

 n

T

hnn n
JPK

9. 1111
ˆ

 nnnn Kxx

10. 1111
ˆ)(nnnn PKIP

11.
kkk haa

T

hak JJ 1

12. kaak k
P

13. kkk I)(1

14.
kk

T

kkk 1

15.
kkk aa

T

hakkk zJ 1

11

Iterate with 1nx , 1nP , 111 ,, nnn

Global Update

9. 11
 nva xx

k

10.
11

 naa PP
k

11. 11
 k

T

abvbvb kkk
Pxx

12. 11
 k

T

abbbbb kkk
PPP

13.
kk abkab PP 11

14. Tvbvak kk
xxx 1

15.

kk

kk

bbba

abaa

k PP

PP
P 1

Iterate with 1kx and 1kP

3.4 Unscented Kalman Filtering (UKF)

The unscented Kalman filter is based on the idea of unscented transform.

3.4.1 Unscented Transform

The unscented transform is a method for calculating the statistics of a random variable which undergoes

a nonlinear transformation . Consider transforming a random variable x (with dimension M) using a

nonlinear function)(xfy . Assume that x has a mean x and covariance xP [9].

In order to compute the statistic of y , we build a matrix of 12 M sigma vector i according to the

following equations:

x0

 MiiPMx xi1 (3.4)

 MMiMiPMx xi 2....1

Where MM)(2 is a scaling parameter. The constant determine the spread of the

sigma points around x and is usually set to a small positive value. The constant is a secondary scaling

parameter which is usually set to 0, and is used to incorporate prior knowledge of the distribution of

x (for Gaussian distribution 2) . iPM x should be computed using Cholesky factorization.

Once sigma vector have been calculated they are propagated through the nonlinear function

 Mify ii 2,....0)((3.5)

And the weighted mean and covariance are computed as follows

 i

M

i

m

i yWy

2

0

)((3.6)

 T

ii

M

i

c

iy yyyyWP

2

0

)((3.7)

M
W m

0 (3.8)

)1(2

0

M
W c

 Mi
M

WW c

i

m

i 2.....1

3.4.2 Unscented Kalman Filtering Algorithm

The UKF algorithm has two major phases the prediction phase and the updated phases. First the

weighting variable and the sigma are computed, then, the prediction phase begin, by predicting sigma

1k for the step which are used in the estimation of the state vector 1
ˆ

kx and the covariance matrix

.ˆ
1kP The observation estimate corresponding to the predicted sigma 1k are used to predicted the

measurement 1
ˆ

kz . At this point the update begin with the computation of the covariance xxP and the

cross covariance xzP that are used to compute the Kalman gain 1kK . The last two steps correct the

state vector and the covariance matrix which the will be input for the next UKF iteration.

UKF Algorithm

1. Compute the weight using (3.8)

Compute the sigma points

2. M

3. kkkkkk PxPxx

I. Prediction Phase

4.),(1 kkk uf

5. 1

2

0

)(

1
ˆ

 k

M

i

m

ik Wx

6. k

T

kkkk

M

i

c

ik QxxWP

 1111

2

0

1
ˆˆˆ

7.)(11 kk h

8. 1

2

0

1
ˆ

 k

M

i

m

ik Wz

II. Update (Correction)

9. k

T

kkkk

M

i

c

izz RxxWP

 1111

2

0

ˆˆ

10. Tkkkk

M

i

c

ixz xxWP 1111

2

0

ˆˆ

11. 1

!

 xzzzk PP

12.)ˆ(ˆ
11111 kkkkk zzxx

13.
T

kzzkkk PPP 1111
ˆ

Iterate with 1kx and 1kP

The unscented Kalman Filter (UKF) has gained popularity because it does not have the linearization step

and resulting errors of the EKF[4],[9]. The UKF employs a deterministic sampling strategy to establish the

minimum set of points around the mean. This set of point capture the true mean and covariance

completely, then these points are propagated through nonlinear functions and the covariance of the

estimation can be recuperated. Another advantage of the UKF is its ability to be employed in parallel

implementation.

4.0 Particle Filters

Particle Filters are recursive implementation of the sequential Monte Carlo method[8]. This method

builds the posterior density using several random samples called particles. Particles are propagated over

time with a combination of sampling and re-sampling steps. At each iteration, the sampling step is used

in order to discard some particles, increasing the relevance of regions with a higher posterior

probability. In the filtering process, several particles of the same state variable are employed, and each

particle has an associated weight that indicates the quality of the particle, therefore the estimation is

the result of the weighted sum of all particles. The standard particle algorithm has two phases

1. The predicting phase and

2. The updating phase.

In the predicting phase, each particle is modified according to the existing model and account for the

sum of random noise to simulate noise effect. Then in the updating phase, the weight of each particle is

reevaluated using the last available sensor observation, and particles with lower weight are removed.

The general particle filter algorithm comprises the following steps:

1. Initialization of the particles

 a. Let N be the number of particles

 b.)1()(ix for Ni ,.....1

2. Prediction Step

a. For each particle i where Ni ,.....1 compute kk

i

kkk wuxfx),ˆ(ˆ)(

|1 where (.)f is the process

dynamic and kw noise with Cauchy distribution.

3. Evaluate particle weight

a. Compute the predicted observation state of the systems using the current predicted state

1

)(

|1|1
)(),ˆ(kk

i

kkkk
i vuxhz where 1kv has Gaussian distribution.

b. Compute the likelihood (weights) according to the given distribution. Consider

 var),;()(

1

)(

|1

)(i

k

i

kk

i zzNlikelihood ;

c. Normalized the weight as follows

N

j

i

i
i

likelihood

likelihood
w

1

)(

)(
)(~

4. Resampling/Selection: multiply particles with higher weights and remove those with lower weights.

The current state must be adjusted using the computed weights of the new particles.

a. Compute the cumulative weights as follows

i

j

ji wcumWt
1

)()(~

b. Generate uniform distributed random variables from)1,0(~)(WU i
 with the number of steps equal

to the number of particles.

c. Determine which particles should be multiplied and which ones removed

5. Propagation Phase:

a. Incorporate the new values of the state after the re-sampling of instant k to calculate the value at

instant 1k . As follows

kk

N

kk xx |1

):1(

1|1
ˆˆ

b. Compute the posterior mean as follows

N

x

x

N

i

i

kk

k

 1

)(

1|1

1
ˆ

c. repeat steps 2 to 5 for each time instant.

Particle filters are more flexible than Kalman Filters and can cope with nonlinear dependencies and non-

Gaussian densities in the dynamic model and in the noise error, but they have some disadvantage: a

large number of particles are required to obtain a small variance[8].

5.0 Data Association

Data association has always been a critical issues for practical SLAM implementation. Data association

arises when landmark cannot be uniquely identified[1],[2],[4]. Data association can simply be presented

as feature correspondence problem, which identifies two features observed in different positions and

different point in time as being from the same physical object in the world. The two common use of

such data association are:

a. Matching two successive scene

b. Closing a loop of a long trajectory when a robot goes back to the starting or previously visited

point of the trajectory.

In order to successfully solve the correspondence problem, selection of robust features are necessary

under weak lightning position or different points of view.

6.0 Feature Extraction

Feature detection, tracking and 3D reconstruction are important step in the SLAM process since they

feed the measurement into the SLAM process. Feature detection consist in estimating the locations of

features in image sequences using detectors such as Harris Corners, Random Sample Consensus

(RANSAC), Scale Invariant Feature Transform (SIFT) or Speed Up Robust Feature (SURF)[7],[3]. 3D

reconstruction is the problem of obtaining the 3D coordinates and the camera pose using two or more

2D images using epipolar geometry and fundamental matrix for example.

7.0 Conclusion

In this tutorial we covered several algorithms that are commonly used to solve 3D SLAM problem

including:

 Kalman Filters

 Extended Kalman Filters

 Unscented Kalman Filters

 Particle Filters

A discussion of some of the robust feature extraction techniques in addition to 3D reconstruction

problem and data association problem was presented.

7.0 Reference

[1] Durrant-Whyte Hugh, Tim Bailey “Simultaneous Localization and Mapping: Part I”

IEEE Robotics & Automation Magazine, June 2006

[2] Bailey Tim, Hugh Durrant-Whyte “Simultaneous Localization and Mapping: Part II”

IEEE Robotics & Automation Magazine, September 2006

[3] Newman Paul Michael “EKF Based Navigation and SLAM”

SLAM Summer School 2006, Oxford

[4] Aulinas Josep “3D Visual SLAM applied to Large Scale Underwater Scenarios”

Msc Thesis: Institute of Informatic and Application, University of Girons, Girons Spains, 2008

[5] Siegwert Roland, R. Nourbakash “Introduction to Autonomous Mobile Robots”

A Bradford Book, The MIT Press, Cambridge Mass, 2004

[6] Kelly Alonzo “3D State Space Formulation of a Navigation Kalman filter for Autonomous Vehicle”

The Robotics Institute Carnegie Mellon University, CMU-RI-TR-94-19-REV 2.0 May 2006

[7] Bradski Gary, Adran Kaeller “Learning OpenCV”

O’Reilly, September 2008: First Edition

[8] Castenedo Frederico “A review of Data Fusion Techniques”

Hidawi Publishing Corporation, The Scientific World Journal,

Volume 2013, Article ID 704504, 19 Pages.

http://dx.doi.org/10.11551/2013/704504

[9] Chu Fang-I “From Baysian to Particle Filter

MA Thesis, San Francisco State University, 2009

About the author:

 Sylvain Dindy-Bolongo is currently Principal at VizCortex, prior to that, he worked as Software Engineer,

Embedded Software Engineer, Control System Engineer, Control Architect for several companies in the

San Francisco Bay Area, including HP, Agilent, Schneider Electric,

Tech-Mahindra, as well as a few startups. He also worked as Part-Time Instructor for the Art Institute of

California at San Francisco, University of California at Bekeley Extension, Sonoma State University

(Master of Engineering Program).

His interests include Robotics (SLAM Navigation, Manipulator Control), Machine Learning, Deep

Learning, Computer Vision, Control Systems (Robust, Intelligent, Embedded).

He earned his BEE, MSEE from Ecole Polytechnique de Montreal (University of Montreal, Canada) and a

PhD in Control Systems and Robotics from Wichita State University, Kansas.

http://dx.doi.org/10.11551/2013/704504

