
A Tutorial on SLAM and Navigation Problem 
By Sylvain Dindy-Bolongo 

1.0 Introduction 

SLAM (Simultaneous Localization and Mapping) is the process by which a mobile robot can built a map 

of an environment and at the same time use this map to determine its location[1]. At the beginning both 

the map of the environment and the robot position are not known, the vehicle has a known kinematic 

model, the environment within which the robot is moving is populated with artificial or natural 

landmark. The vehicle is equipped with sensors capable of taking measurement of the relative position 

between landmarks and the vehicle itself. 

This tutorial is an overview of common techniques presently used to solve 3D SLAM. 

2.0 SLAM Definition and Process 

2.1 State Space Model  

Let’s consider the problem where a robot is moving in an environment. Initially both the map and the 

vehicle position are not known but the vehicle has known kinematic model and it is moving through the 

unknown environment which is populated with artificial or natural landmark. 

 

Figure 2.1 The essential SLAM Problem 



The autonomous vehicle is moving as shown in Figure 2.1. At a time instant k  , the following quantities 

are defined: 

:
kvx  The state vector describing the location and orientation or pose of the vehicle 

:
kvu  The control applied at the time 1k  to drive the vehicle to a state 

kvx at the time k  

:kz  a measurement taken from the vehicle of the location of the ith  landmark at the time k  

The state of the system at a given moment k  is modeled with the state of the vehicle 
kvx which contains 

the robot pose augmented by the 3D position of the landmark. Assuming that N landmarks have been 

validated and incorporated into the system, then the vector of the landmark is denoted by kz see Figure 

2.1. 
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Landmark position is assumed to be constant i.e all landmarks are considered stationary that means 

1 kk pp  therefore the model for the evolution of the landmark does not contains any 

uncertainties[4]. 

The augmented state vector containing the state of the vehicle and the state of all landmarks (2.1) is 

then used to estimate a next state by means of the state transition model (2.2). 

A state transition matrix kF , vector of control input 
kvu and a vector of temporally uncorrelated process 

noise kw with zero mean and with covariance kQ are used to model the motion of the vehicle through 

the environment. 
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Where 
ipI  is an identity matrix of the size equal to the dimension of a landmark which is 3 for 3D 

landmark  and  
ipo a 3D zero vector. 

 

 

 



2.2 Measurement Model 

The measurement model estimate the observation and is given by equation (2.3) 

                                          kkkk vxHz                                                                                (2.3) 

 Matrix kH relates the output of a sensor to the state vector kx , a vector kv                                               

for temporally uncorrelated observation, error with zero mean and covariance kR   is used.    

 

3.1 Kalman Filtering (KF) 

Kalman filtering is a technique for filtering and predicting linear systems. It is widely used in the control 

system community to solve stochastic control problem. In the framework of SLAM problem solution, this 

filter is comprised of three main steps: prediction, observation and update, which keep repeating as the 

time go by. The method can be described as follows: 

a. In the prediction phase the vehicle kinematic model is used to provide an estimate of the state 

vector 1
ˆ

kx , the covariance matrix 1
ˆ
kP  and the measurement 1

ˆ
kz  at the time 1k  from the 

state vector kx  and the covariance matrix kP  

b. During the measurement phase the innovation vector k  as the difference between the real 

and the estimated measurement and the associated covariance matrix   are computed 

c. During the update phase the matrix   is used to compute the Kalman gain K. The gain K and the 

covariance matrix   are used in order to correct the state vector 1
ˆ

kx  and the covariance 

matrix 1
ˆ
kP  into 1kx  and 1kP . The overall process can be summarized as follows. 

 

Kalman filtering Algorithm 

I. Prediction 

1. kkkk uxFx 1
ˆ  
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T
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ˆ  

3. 11
ˆˆ

  kkk xHz  

II. Measurement Phase 

4. 1kz  is measured 

5. 111
ˆ

  kkk zz  

6. k

T

kkkk RHPH   11
ˆ  

III. Update Phase 

7. 
1

111
ˆ 

  k

T

kkk HPK  

8. 1111
ˆ

  kkkk Kxx   

9. 1111
ˆ)(   kkkk PKIP  

10. Iterate with 1kx  and 1kP  

Where kQ  is the process covariance matrix and kR the measurement covariance matrix. 



 

3.2 Extended Kalman Filtering (EKF) 
The assumption of linear state transition and linear measurement with added Gaussian noise are rarely 

fulfilled in practice. The motion and measurement equation are nonlinear in general. 

Consider the nonlinear system described by the following equations: 
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Where (.)f  models the kinematics and kw  are additive zero mean uncorrelated Gaussian motion 

disturbances with covariance kQ  and where  (.)h describe the geometry of the observation and kv

white Gaussian noise with covariance kR . 

Equation (3.1) can be linearized along a given trajectory resulting in the Extended Kalman Filtering 

method. 

Defined the Jacobians 
kf

J and 
khJ  as follows: 
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A similar iterative process as described for the KF problem can be used and is summarized as follows: 

Extended Kalman filtering Algorithm 

I. Prediction 

1. ),(ˆ
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2. k

T

fkfk QJPJP
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3. )ˆ(ˆ
11   kk xhz  

II. Measurement Phase 

4. 1kz  is measured 

5. 111
ˆ

  kkk zz  

6. k

T

hkhk RJPJ
kk
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III. Update Phase 

7. 1
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8. 1111
ˆ

  kkkk Kxx   

9. 1111
ˆ)(   kkkk PKIP  

10. Iterate with 1kx  and 1kP  



Where kQ  is the process covariance matrix and kR  the measurement covariance matrix. 

3.3 Compressed Extended Kalman Filtering (CEKF) 

The compressed Extended Kalman filtering is an implementation of the EKF where the computational 

effort is reduced[4]. It takes advantage of the fact that large sequences of prediction and observation 

step depend only on reduced set of states, because they are independent from most element in the 

state vector, making unnecessary to perform a full SLAM update in local area. 

The CEKF take advantage of this fact by working only over local regions, performing local SLAM with 

those features that are in the vicinity of the vehicle independently of the size of the of the whole map 

then a global update is conducted. The Algorithm is described as follows[4]. 

The robot environment is divided into two regions. A global region denoted B and a local region 

denoted  A and also called active region. This result in the partitioning of the state vector kx  and the 

covariance matrix kP into the active part 
kax and 

kaaP  containing the vehicle state and landmark inside 

the active region, and the passive part 
kbx ,

kbbP  and 
kabP  containing landmark outside the active region. 

Note that, at the very beginning,
0ax  will contain the vehicle state but no landmarks, and the

0bx  will be 

an empty entity.  This partitioning is given as follows[4]: 
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The essence of CEKF algorithm is to perform EKF algorithm on ax  and aaP . This is possible thanks to the 

fact that the innovation matrix a and the Kalman gain aK  for the local region A are independent from 

the vector and matrices related to region B , i.e. bbb Px ,  and aP . The final output of this local SLAM is 

then used to update the global x  and P . 

In order to perform this global update, the vector 
kbx  and the matrices 

kbbP  and 
kabP  must be also 

updated. For this reason several auxiliary computations are added in the prediction and the update 

stages, without interfering the local SLAM procedure, cost and final result. These extra computations 

only generates auxiliary variables (  , and  ), that accumulate the effect of each single iteration 

during the local SLAM process. Define: 
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Where 
kkk aa

T

ak JJ  , kaak P    and 0  a )dim(  zero vector. 



These variables are then used to update the value of vbx  and bbP  and  abP  to the global map. 
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The CEKF algorithm is given as follows[4]: 

CEKF Algorithm 

1. Define actual active region 

2. Define 
kvax , 

kaaP  and 
kvbx , 

kabP  and 
kbbP  

3. Initialize 
kkkkk aaaaa uRQJP ,,,  for the active region 

4. 
kvan xx   

5. 
kan PP   

6. 
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7. 0,0,  nnn I   

8. Active Region Extended Kalman Filter 

I         Prediction 
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III. Update Phase 
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Global Update 
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3.4 Unscented Kalman Filtering (UKF) 

The unscented Kalman filter is based on the idea of unscented transform. 

3.4.1 Unscented Transform 

The unscented transform is a method for calculating the statistics of a random variable which undergoes 

a nonlinear transformation . Consider transforming a random variable x  (with dimension M  )  using a 

nonlinear function )(xfy  . Assume that x   has a mean x  and covariance  xP [9].  

In order to compute the statistic of y , we build a matrix  of 12 M  sigma vector i  according to the 

following equations: 

x0  

   MiiPMx xi .....1                                                                            (3.4) 

   MMiMiPMx xi 2....1   

Where MM  )(2   is a scaling parameter. The constant   determine the spread of the 

sigma points around x  and is usually set to a small positive value. The constant   is a secondary scaling 

parameter which is usually set to 0, and   is used to incorporate prior knowledge of the distribution of 



x  (for Gaussian distribution 2 ) .   iPM x  should be computed using Cholesky factorization. 

Once sigma vector have been calculated they are propagated through the nonlinear function 

                                Mify ii 2,....0)(                                                       (3.5) 

And the weighted mean and covariance are computed as follows 
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3.4.2 Unscented Kalman Filtering Algorithm 

The UKF algorithm has two major phases the prediction phase and the updated phases. First the 

weighting variable and the sigma are computed, then, the prediction phase begin, by predicting sigma 

1k  for the step which are used in the estimation of the state vector 1
ˆ

kx  and the covariance matrix 

.ˆ
1kP  The observation estimate corresponding to the predicted sigma 1k  are used to predicted the 

measurement 1
ˆ

kz . At this point the update begin with the computation of the covariance xxP  and the 

cross covariance xzP  that are used to compute the Kalman gain 1kK . The last two steps correct the 

state vector and the covariance matrix which the will be input for the next UKF iteration. 

UKF Algorithm 

1. Compute the weight using (3.8) 

Compute the sigma points 

2.   M  

3.  kkkkkk PxPxx    

I. Prediction Phase 

4. ),(1 kkk uf    
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II. Update (Correction) 
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Iterate with 1kx  and 1kP  

The unscented Kalman Filter (UKF) has gained popularity because it does not have the linearization step 

and resulting errors of the EKF[4],[9]. The UKF employs a deterministic sampling strategy to establish the 

minimum set of points around the mean. This set of point capture the true mean and covariance 

completely, then these points are propagated through nonlinear functions and the covariance of the 

estimation can be recuperated. Another advantage of the UKF is its ability to be employed in parallel 

implementation. 

4.0 Particle Filters 

Particle Filters are recursive implementation of the sequential  Monte Carlo method[8]. This method 

builds the posterior density using several random samples called particles. Particles are propagated over 

time with a combination of sampling and re-sampling steps. At each iteration, the sampling step is used 

in order to discard some particles, increasing the relevance of regions with a higher posterior 

probability. In the filtering process, several particles of the same state variable are employed, and each 

particle has an associated weight that indicates the quality of the particle, therefore the estimation is 

the result of the weighted sum of all particles. The standard particle algorithm has two phases 

1. The predicting phase and 

2. The updating phase. 



In the predicting phase, each particle is modified according to the existing model and account for the 

sum of random noise to simulate noise effect. Then in the updating phase, the weight of each particle is 

reevaluated using the last available sensor observation, and particles with lower weight are removed. 

The general particle filter algorithm comprises the following steps: 

1. Initialization of the particles 

 a. Let N be the number of particles 

 b. )1()(ix  for Ni ,.....1  

2. Prediction Step 

a. For each particle i  where Ni ,.....1    compute  kk

i

kkk wuxfx  ),ˆ(ˆ )(

|1  where (.)f is the process 

dynamic and kw  noise with Cauchy distribution. 

3. Evaluate particle weight 

a. Compute the predicted observation state of the systems using the current predicted state 
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b. Compute the likelihood (weights) according to the given distribution. Consider 
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c. Normalized the weight as follows 
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4. Resampling/Selection: multiply particles with higher weights and remove those with lower weights. 

The current state must be adjusted using the computed weights of the new particles. 

a. Compute the cumulative weights as follows 
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b. Generate uniform distributed random variables from )1,0(~)( WU i
 with the number of steps equal 

to the number of particles. 

c.  Determine which particles should be multiplied and which ones removed 

5. Propagation Phase: 

a. Incorporate the new values of the state after the re-sampling of instant k  to calculate the value at 

instant 1k . As follows 
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b. Compute the posterior mean as follows 
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c. repeat steps 2 to 5 for each time instant. 

Particle filters are more flexible than Kalman Filters and can cope with nonlinear dependencies and non-

Gaussian densities in the dynamic model and in the noise error, but they have some disadvantage: a 

large number of particles are required to obtain a small variance[8]. 

5.0 Data Association 

Data association has always been a critical issues for practical SLAM implementation. Data association 

arises when landmark cannot be uniquely identified[1],[2],[4]. Data association can simply be presented 

as feature correspondence problem, which identifies two features observed in different positions and 

different point in time as being from the same physical object in the world. The two common use of 

such data association are: 

a. Matching two successive scene 

b. Closing a loop of a long trajectory when a robot goes back to the starting or previously visited 

point of the trajectory. 

In order to successfully solve the correspondence problem, selection of robust features are necessary 

under weak lightning position or different points of view. 

6.0 Feature Extraction 

Feature detection, tracking and 3D reconstruction are important step in the SLAM process since they 

feed the measurement into the SLAM process. Feature detection consist in estimating the locations of 

features in  image sequences using detectors such as Harris Corners, Random Sample Consensus 

(RANSAC), Scale Invariant Feature Transform (SIFT) or Speed Up Robust Feature (SURF)[7],[3]. 3D 

reconstruction is the problem of obtaining the 3D coordinates and the camera pose using two or more 

2D images using epipolar geometry and fundamental matrix for example. 

7.0 Conclusion 

In this tutorial we covered several algorithms that are commonly used to solve 3D SLAM problem 

including: 

 Kalman Filters 

 Extended Kalman Filters 

 Unscented Kalman Filters 

 Particle Filters 



A discussion of some of the robust feature extraction techniques in addition to 3D reconstruction 

problem and data association problem was presented. 
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