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1.0 Introduction 

Machine learning is concern with how to teach computers to learn from experience. Machine 
learning algorithms learn information directly from data. Such algorithms adaptively improve 
their performances as the number of available learning samples increases. 
Machine learning algorithms find natural pattern in data that help make better decisions and 
predictions. 

 

2.0  Machine Algorithms Overview 
Machine learning algorithms work on data. The data is often preprocessed into features.                                   
Machine learning techniques consist in constructing some kind of model from collected data.  
Figure 2.1 shows the basic setup for statistical machine learning problem. The objective here is 
to model the true function f that transforms the input vector to some output. This function may 
be a regression problem or a category prediction problem. 
 

 
Figure 2.1  Setup for statistical machine learning: the classifier is trained to fit a data set. The 
model f  is, most of the time corrupted by noise. 

 
Machine learning algorithms usually have a set of goals to meet. In order to meet those goals, 
the learning algorithms analyzed collected features and adjust some parameters or weights. 
The process of parameter adjustment is what is called learning. 
 



 

2.1 Training and Test Data Set 
It is always important to know how well machine learning methods are working. In general the 
original data set is broken into large training set and smaller test set. The algorithm is run on 
the training set in order to learn the weight given the data feature vectors. After this is  done, 
then test data are used in order to predict the outcome. 
 

2.2 Supervised and Unsupervised Learning 
The objective of supervised machine learning is to build a model to make prediction based on 
evidence in the presence of uncertainties. Supervised data has labels which are some kind of 
teaching signals that goes with the data feature vectors. If the data vectors are unlabeled the  
machine learning is unsupervised. The algorithm for such unsupervised learning are called 
clustering algorithms. In this situation, the goal is to groups unlabeled data vector that are 
closed. 

 
Figure 2.2  Supervised and unsupervised learning 
 
Supervised learning can be categorical or the data can be numeric or ordered labels. When the 
data is numeric we say that we are doing regression. Supervised learning can involved one-to-
one pairing of labels with data vector or it may consist of deferred learning (sometimes called 
reinforcement learning). In reinforcement learning, the data label (also called reward or 
punishment) can come long after the individual data vector is observed. 
 

2.3 Discriminative and Generative Learning Algorithm 
Algorithm that try to model the conditional probability )|( xyp  of y given x  where y   is the 

model output and x is the input feature is said to be discriminative learning algorithm and 
algorithm that try to model )|( xyp  and  )( yp  a priori probability are called generative 

algorithms. 
 

 



2.4 Feature dimension Reduction 
We will examine two methods to reduce the input space dimension.  
 
2.4.1 Principal component Analysis 
The reduction is achieved by transforming the data into a new set of variable called principal 
components. In addition it is possible by means of eigen analysis to select only those principal 
components which preserve the most important feature of the original space. 
The PCA methods is based on the linear transformation of N  vector x  into the vector y  using 

the KN   matrix W  and is given as follows: 
                                                                           Wxy                                                                    (2.1) 

Matrix W  is defined as follows 
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where the iw  are  eigenvectors  of the autocorrelation matrix of the input vector defined as 

follows: 
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where )dim(x is the dimension of x. 

The PCA transform, changes the large number of input data into a set of components according 
to their importance. The principal components are the projection of the original input vector x  
onto the principal directions of the eigenvectors. For example the 2D case is given on Figure 
2.3. 

 
Figure 2.3  2D example of the PCA method 

 
 



2.4.2 Breiman’s variable importance Algorithm 
Variable importance can be used in order to reduce the number of features that the classifier 
must be considered. Starting with many features, you train the classifier and then find the 
importance of each feature relative to other features. Unimportant feature can then be 
discarded, eliminating unimportant features improve speed performance. 
The Breiman’s variable important algorithm is given as follows[6]: 

1. Train the classifier on the training data set 

2. Use the validation or test to determine the accuracy of the classifier 

3. For every data point and a chosen feature, randomly choose a new value for that 

feature from among the values the feature has in the rest of data set. 

4. Train the classifier on the altered set of training data and measure the accuracy of 

classification on the altered test or validation data set. If randomizing a feature hurts 

accuracy a lot, then that feature is very important. If randomizing a feature does not 

hurt accuracy much, then that feature is of little importance and is candidate of 

removal. 

5. Restore the original test or validation data set and try the next feature until we are 

done. The result is an ordering of each feature by its importance. 

2.5 How to Diagnose Machine Learning Problem 
Getting machine learning to work well can be more of an art than a science. Here we have 
some rules of thumb regarding machine learning[1]:  more data beats less data, and better 
features beat better algorithms. There are two common problems see Figure 2.4: 
 
Under fit model: That mean model assumptions are too strong for the data, so the model won’t 
fit well. The possible solutions are as follows:  

 More features can help make a better fit 

 Use a more powerful algorithm 

Over fit model: That means the algorithm used has memorized the data including noise so that 
it can’t generalized. Some solutions are given as follows: 

 More training data can help smooth the model 

 Fewer features can reduce overfitting 

 Use less powerful algorithm 



 
Figure 2.4  Pour model fitting in machine learning and its effect on training and test prediction 
performance. 
 
Figure 2.4  shows under and overfitting of data on top and the corresponding error in term of 
the training set size. If we use the model that is to restrictive, we can never fit the true parabola 
in blue in the top left. The fit to both the training and the test data is poor. On the right side we 
fit the training data set exactly. It memorizes the training data as well as the noise in the data, 
the resulting fit to the test data is poor. 
 
2.6 Cross-Validation, Bootstrapping,  ROC and Confusion Matrix 
There are some basic tools that are used in machine learning to measure results. In supervised 
learning, one of the most basic problems is simply knowing how well your algorithm has 
performed: how accurate is it at classifying or fitting data? In order to yield more accurate 
measures of actual performance of the machine learning algorithms, techniques such as cross-
validation and/or bootstrapping are used [1]. 
Cross-validation involves dividing the data into K  different sub-sets of data. The algorithm is 
trained on 1K  subset and test on the final subset of the data that wasn’t trained on. This is 
done K  times, where each of the K  subsets gets a “turn” at being the validation set, and the 
average the result. 
Bootstrapping is similar to cross-validation, but the validation set is selected at random from 
the training data. 



Two other useful ways of assessing, characterizing, and tuning classifiers are plotting the 
receiver operating characteristic (ROC) and filling in a confusion matrix see Figure 2.5 

 
Figure 2.5 ROC curve and associated confusion matrix. 
 
In Figure 2.5 the ROC curve measures the response of the classifier in term of performance 
parameters. The Figure 2.5 also shows a confusion matrix. This is just a chart of true and false 
positives along with true and false negatives. 
 

3.0 Somme Common Algorithms 
3.1 K-Means 
K -means is a clustering algorithm. It attempts to find the natural cluster in the data. The K-
means clustering algorithm is a particularly simple and effective approach to producing clusters 
on data. The idea is to represent each cluster by it’s cluster center. Given cluster centers, we 
can simply assign each point to its nearest center. Similarly, if we know the assignment of 
points to clusters, we can compute the centers.  
The following algorithm describes the K -means clustering algorithm in detail[10]. The cluster 

centers are initialized randomly. Data point nx  is compared against each cluster center k . It is 

assigned to cluster k  if k is the center with the smallest distance. The variable nz  stores the 

assignment (a value from 1  to K ) of example n . The cluster centers are re-computed. First, 

kX stores all examples that have been assigned to cluster k . The center of cluster k , k  is 

then computed as the mean of the points assigned to it. This process repeats until the means 
converge 
 
 
 
 
 



Algorithm  K -Means( ), KD  

      for 1k to K  do  

             locationrandomSomek        // randomly initialize mean for kth cluster  

      end for 
       repeat 
            for 1n   to N  do  

                 )arg(min nkkn xz                // assign example n to closest center  

            end for 
            for 1k to K  do  

                  }:{ kzxX nnk                          // points assigned to cluster 

                  )( kk XMean                            // re-estimate mean of cluster k  

            end for 

      until k stop changing 

return z  // return cluster assignments 
 
3.2 K-Nearest Neighbors 
The K -Nearest Neighbors is a classification technique. At training time, the entire training set is 
stored. At test time, a test example x̂  is picked. To predict its label, we find the training 
example x  that is most similar to x̂ . In particular, we find the training example x  that 
minimizes )ˆ,( xxd  which is the measure of distance between  x  and x̂  and is given as follows: 
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Where D  is the number of data points. Since x  is a training example, it has a corresponding 
label y . We predict that the label of x̂  is also y . 

 
Algorithm  KNN-Predict( xKD ˆ,, )[10] 

][S  

for 1n   to N  do 

     nnxxdSS n ),ˆ,(                        // store distance to training example  

end for 
)(SsortS                                                   // put lowest-distance objects first  

0ˆ y  

for k = 1 to K do  

     
kSndist ,                                           // n this is the kth closest data point 

       nyyy  ˆˆ                                             // vote according to the label for the nth training point  

end for 

return )ˆ(ysign                                               // return 1 if 1ˆ y  and 1 if 1ˆ y  



Despite its simplicity, this nearest neighbor classifier is incredibly effective. However, it is 
particularly prone to overfitting label noise.   
 

3.3  Naïve Bayes Classifier 
The Naïve Bases classifier some time called normal Bayes classifier is supervised classifier. It’s 
naïve because it assumes that all the features are independent from one another even though 

this is seldom the case. Consider the probability denote p of an Object  given the iFeature  see 

Figure 3.1, with 5..1i  

 
Figure 3.1  A naïve Bayesian network, where the lower-level features are caused by the 
presence of an object. 
 
which can be written as follows using Bayes laws[1]: 
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We can use the definition of conditional probability to derive the joint probability 
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If we apply the assumption of independence of features, the conditional features drop out. We 
can therefore generalize as follows: 
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To use this as an overall classifier, we learn the models for the objects that we want. In the run 
mode we compute the features and find the objects that maximizes this equation. We typically 
test to see if the probability for this object is over a given threshold. If it is, then we declare the 
object to be found, if not, we declare that no object was recognized. 
 
 



3.4 Expectation Maximization (EM) with Gaussian Mixture 
Suppose that you  have a probabilistic model that assumes access to labels, but you don’t have 
any labels. You can treat the labels as hidden variables, and attempt to learn them at the same 
time as you learn the parameters of your model. There is  a very broad family of algorithm for 
solving this kind of problem and is called Expectation Maximization family of algorithm. 
 

Suppose that we are given a training set  },...,{ )()2()1( mxxx  without labels. We wish to model 

the data by specifying a joint distribution The model )()|(),( )()()()()( iiiii zpzxpzxp  .  Here 

)(~)( lmultinomiaz i  .  Let k  denote the number of values that the )(iz  can take on. The 

problem can be described as follows each )(ix  was generated by randomly choosing )(iz from 

 k,.....2,1 , and then )(ix  was drawn from one of k  Gaussians depending on )(iz  .This is called 

the mixture of Gaussians model. Note that  here )(iz   ’s are the hidden variables.  
 
Define the likelihood data as follows: 
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Parameters ,,  can be determined by setting the derivative of the likelihood function to 

zero. It can be shown that it is not possible to get maximum likelihood estimates of the 
parameters in closed form.  
 

Note that if we knew what the )(iz  were, the maximum likelihood problem would have been 
easy. Specifically, we could then write down the likelihood as 
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Maximizing this with respect to ,,  gives the parameters: 
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Note that  1{·} operator takes on a value of 1 if its argument is true, and 0 otherwise. 
 
Since we don’t have labels.  One potential solution is to use iteration. We can start off with 
guesses for the values of the unknown variables, and then iteratively improve them over time 
An algorithm that does that is given as follows: 
 
This EM algorithm is an iterative algorithm that has two main steps. In the E-step the values of 

the )(iz ’s are guessed. In the M-step, the parameters of our model are updated based on our 
guesses. Since in the M-step we are pretending that the guesses in the first part were correct, 
the maximization becomes easy. Here’s the algorithm[7]: 
 
Repeat until convergence: { 
 
                 (E-step) For each ji,  set 

                                ),,;|(: )()()(  iii xjzpw  

                  
                (M-step) Update the parameters: 
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3.5 Support Vector Machine 
3.5.1 Primal Optimization Problem 
Let us consider the linear classification in two dimension. The straight line separates the 

positives from the negatives. It is defined by txw i . , where w  is a vector perpendicular to the 

decision boundary and pointing in the direction of the positives, t  is the decision threshold, and 

ix  points to a point on the decision boundary. In particular, 0x  points in the same direction as 

w , from which it follows that txwxw  00 ..  ( x  denotes the length of the vector x ). 

 



 
Figure 3.2 Linear classification in 2D 
 
The geometry of a support vector classifier is given in Figure 3.3. The circled data points are the 
support vectors, which are the training examples nearest to the decision boundary. The support 

vector machine finds the decision boundary that maximizes the margin wm . 

Since we are free to rescale  wt,  and m , it is customary to choose 1m . Maximizing the 

margin then corresponds to minimizing w or, more conveniently, 
2

2

1
w , provided of course 

that none of the training points fall inside the margin. 
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Figure 3.3 Geometry of the support Vector 
This leads to a quadratic, constrained optimization problem[8]: 
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s.t nitxwy ii  ,1).(  

 
The above is an optimization problem with a convex quadratic objective function and only 
linear constraints. Its solution gives us the optimal margin classifier. This optimization problem 
can be solved using commercial quadratic programming (QP) code. 
 
In the following, we will talk about Lagrange duality, because the dual form of this optimization 
problem will play a key role and will allow us to use kernels. Kernels are useful in the sens that 
they project data into higher dimensional space and then find the optimal linear separator 
between the classes. 
 
3.5.2 Dual Optimization Problem 
The dual optimization problem for support vector machines is to maximize the dual Lagrangian 
under positivity constraints and one equality constraint: 
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s.t ni  1,0  and 


n

i

ii y
1

 =0 

By examining the dual form of the optimization problem, we gained significant insight into the 
structure of the problem, and were also able to write the entire algorithm in terms of only inner 
products between input feature vectors. We will exploit this property to apply the kernels to 
our classification problem. The resulting algorithm, support vector machines, will be able to 
efficiently learn in very high dimensional spaces. 
 
2.5.3 Kernel 
Let us define a feature mapping   the mapping of an attribute x into a feature space. Given a 

feature mapping  , we define the corresponding Kernel to be 

                                      )()(),( zxzxK T   

Now, given  , we can compute ),( zxK  by finding )(x and )(z and taking their inner 

product. ),( zxK is often inexpensive to calculate. This can be done by making SVMs to learn in 

the high dimensional feature space given by  , without  having to explicitly find or represent 

vectors )(x [8]. 

For example suppose we have nRzx ,   and consider 2)(),( zxzxK T  We can also write this 

as   ji
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Thus, we see that )()(),( zxzxK T  , where the feature mapping   is given (shown here for 

the case of n = 3) by 

 Txxxxxxxxxxxxxxxxxxx 332313332212312111 ,,,,,,,,)(   

Note that whereas calculating the high-dimensional )(x requires )( 2nO  time, finding ),( zxK  

takes only )(nO time—linear in the dimension of the input attributes.  

Suppose for now that K  is indeed a valid kernel corresponding to some feature mapping   . 

Now, consider some finite set of m  points (not necessarily the training set) },...,{ )()2()1( nxxx , 

and let a square, m-by-m matrix K be defined so that its  ji, -entry is given by 

),( )()( ji

ji xxKK  . This matrix is called the Kernel matrix. 

 

Theorem (Mercer)[7]. Let RRRK nn :  be given. Then for K  to be a valid (Mercer) kernel, 

it is necessary and sufficient that for any },...,{ )()1()1( mxxx ,  m , the corresponding kernel 

matrix is symmetric positive semi-definite. 
 
3.5.4 Regularization and the non-separable case 
The derivation of the SVM as presented so far assumed that the data is linearly separable. 
While mapping data to a high dimensional feature space via φ does generally increase the 
likelihood that the data is separable, we can’t guarantee that it always will be so. Also, in some 



cases it is not clear that finding a separating hyperplane is exactly what we’d want to do, since 
that might be susceptible to outlier 
To make the algorithm work for non-linearly separable datasets as well as be less sensitive to 
outliers, we reformulate our optimization (using ℓ1 regularization) as follows: 
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Thus, examples are now permitted to have (functional) margin less than 1, and if an example 

has functional margin  i1  (with 0i ), we would pay a cost of the objective function being 

increased by i . The parameter   controls the relative weighting between the twin goals of 

making the  
2

w  small (which we saw earlier makes the margin large) and of ensuring that 

most examples have functional margin at least 1. 
The dual of this problem is given as follows[7] 
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3.5.5 The SMO algorithm 
The SMO (sequential minimal optimization) algorithm, gives an efficient way of solving the dual 
problem arising from the derivation of the SVM. Let’s talk about the coordinate ascent 
algorithm that can be useful in the solution of the SMO. 
 
3.5.5.1 Coordinate ascent 
Let consider the following unconstrained optimization problem 
 

                                                      ),..,(max 21 mW 


                                               (3.10) 

The solution of this problem involve the coordinate ascent algorithm that can be can be 
described as follows[8]: 
 
 Loop until convergence: { 
      For mi ,...1  

         ),...,ˆ,..,(maxarg 1,121 miiiW 


                                                            (3.11) 

 } 



Thus, in the innermost loop of this algorithm, we will hold all the variables except for some i

fixed, and reoptimize W  with respect to just the parameter i . 

 
3.5.5.2 SMO algorithm 
Now we can use the SMO algorithm to solve dual problem as follows[7]: 
Repeat till convergence {  

1. Select some pair i  and j  to update next (using a heuristic that tries to pick the 

two    that will allow us to make the biggest progress towards the global maximum).  

               2. Reoptimize )(W with respect to i  and 
j , while holding all the other k ’s 

 jik ,  fixed.  

} 
 

3.6 Decision Trees 
Consider the problem of predicting a response or class y  from inputs  pxxx ,...., 21  called 

feature. We do this by growing a binary tree.  At each node in the tree, we apply a test to one 

of the inputs, say ix . Depending on the outcome of the test, we go to either the left or the right 

sub-branch of the tree. Eventually we come to a leaf node, where we make a prediction. This 
prediction aggregates or averages all the training data points which reach that leaf.  
Why do this? Predictors like linear or polynomial regression are global models, where a single 
predictive formula is supposed to hold over the entire data space. When the data has lots of 
features which interact in complicated, nonlinear ways, assembling a single global model can be 
very difficult, and hopelessly confusing when you do succeed. Some of the non-parametric 
smoothers try to fit models locally and then paste them together, but again they can be hard to 
interpret. 
An alternative approach to nonlinear regression is to sub-divide, or partition, the space into 
smaller regions, where the interactions are more manageable. We then partition the sub-
divisions again. 
That’s the recursive partition part; what about the simple local models? For classic regression 
trees, the model in each cell is just a constant estimate of y  . That is, suppose the points 

),)...(,(),,( 2211 cc yxyxyx  are all the samples belonging to the leaf-node l . Then our model for 

l  is just 



c
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iy
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y
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1
ˆ , the sample mean of the response variable in that cell. This is a piecewise-

constant model. There are several advantages to this: 

 Making predictions is fast (no complicated calculations, just looking up constants in the 

tree) 

 It’s easy to understand what variables are important in making the prediction (look at 

the tree)  

 If some data is missing, we might not be able to go all the way down the tree to a leaf, 

but we can still make a prediction by averaging all the leaves in the sub-tree we do 

reach 



 The model gives a jagged response, so it can work when the true regression surface is 

not smooth. If it is smooth, though, the piecewise-constant surface can approximate it 

arbitrarily closely (with enough leaves)  

 There are fast, reliable algorithms to learn these trees 

3.6.1 Entropy 
Entropy is a measurement of chaos. It is a powerful tool that can be used in order to determine  
what features to use and how to carve up the feature space for achieving the best possible 
discrimination between the classes[2]. 

Entropy Definition: If a random variable X  can take  N different values, the ith  value ix  with 

probability ip , we can associate the following entropy with X : 
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Conditional Entropy Definition: The conditional entropy )|( XYH  measures how much entropy 

(chaos) remains in Y  if we already know the value of the random variable X . 
                                                 )(),()|( XHYXHXYH                                                     (3.13) 

Given two random variables X  and Y  , the entropy contained in both when taken together is 
),( YXH . The above definition says that, if X and Y are inter-dependent, and if we know X , we 

can reduce our measure of chaos in Y  by the chaos that is attributable to X . ),( YXH  is 

defined as follows: 
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Average Entropy Definition: Given N independent random variables NXXX ..., 21 , we can 

associate an average entropy with all N variables by 
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For another kind of an average, the conditional entropy )|( XYH  is also an average, in the 

sense that the right hand side shown below is an average with respect to all of the different 
ways the conditioning variable can be instantiated: 
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3.6.2 Using Class Entropy to Discover the Best Feature for Discriminating Between the Classes 

Let us consider the following set of features kxxx ,...., 21  we want to find out which of these 

feature is class discriminative? 
To discover the best feature, all we have to do is to compute the class entropy as conditioned 
on each specific feature x separately as follows[2] 
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where the notation axv )(  means that the value of feature x  is some specific value a. The we 

selects the feature f  for which )|( xCH  is the smallest value 



After finding the best feature for the root node in this manner, we can draw two branches from 
it, one for the training samples for which axv )(  and the other for the samples for which 

axv )(  as shown in the figure below: 

 

 
Figure 3.4 Example of binary decision tree. 
 

 
Figure 3.5 Example of arbitrary decision tree 
 
Tree growing rule: 

 You will add other child nodes to the root in the same manner, with one child node for 

each value that can be taken by the feature )( jx . 

 This process can be continued to extend the tree further to result in a structure that will 

look like what is shown in the Figure [3.4,3.5] above. 

 A node is assigned the entropy that resulted in its creation. For example, the root gets 

the entropy )(CH computed from the class priors. 

 The children of the root are assigned the entropy )|( )( jxCH  that result in their 

creation 



 A child node of the root that is on the branch j

j axv )( )(  gets its own feature test (and 

is split further) if and only if we can find a feature )(kx such that )(,|( )()(

j

jk axvxCH  is 

less than the entropy )|( )( jxCH  inherited by the child from the root. 

 If the condition )|()(,|( )()()( j

j

jk xCHaxvxCH   cannot be satisfied at the child 

node on the branch  j

j axv )( )( of  the root for any feature )( jxx  the child node 

remains without a feature test and becomes a leaf node of the decision tree. 

Beside the entropy other metric relative to the data in every node of the tree is used. The term 
impurity is some time used to designate these metric. 
 
3.6.3 Regression Impurity 
For regression or function fitting, the equation for the node impurity is simply the square of the 
difference in value between the node value y  and the data value x . We want to minimize[1]: 

                                                  
j

xyNi 2)()(                                                           (3.18) 

3.6.3 Classification Impurity 
For classification, decision tree often use one of the three methods: entropy impurity, Gini 
impurity or misclassification impurity[1]. For these methods, we use the notation )( jCP  to 

denote the fraction of pattern at the node N that are in class jC each of these  impurities has 

slightly different effects on the splitting decision. Gini is the most commonly used. 
 
Entropy impurity 
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j CPCPNi                                           (3.19) 

Gini impurity 

                                            )()()( i

ij

j CPCPNi 


                                                           (3.20) 

Misclassification impurity 
                                            )(max1)( jCPNi                                                             (3.21) 

 
Decision tree are the most widely used classification technology. This is due to their simplicity 
of implementation, ease of interpretation of result, flexibility with different data types. 
 

3.7 Boosting 
Decision tree are useful but they are often not the most performing classifier. Boosting use 
decision tree in their inner loop. Boosting algorithm, Adaboost as described here, are used to 

train N  weak classifiers  nhn .....2,1  . These classifiers are generally simple individually. In 

most case these classifiers are decision trees with only on split (called decision stumps). Each 

classifier is assigned a weighted vote nv  in final decision making process. We use a labeled data 

set of input feature vector )(ix each with scalar vector )(iy  (where Mi ,...1 data point). For 



Adaboost the label is binary  1,1)( iy . We initialize a data point weighting distribution )(iDn  

that tells the algorithm how much misclassifying a data will cost. The algorithm is described as 
follows[1]: 

1. mi
m

iDn ,...1,
1

)(   

2. For n,..11 : 

a. Find the classifier nh  that minimizes the )(iDn  weighted error: 

b. j
Hh

n
j

h 


 minarg  where 



m

i

nn iD
1

)(   (for )( )()( i

j

i xhy  ) as long as 5.0j  

else quit 

c. Set the voting weight  jjnv  )1(log
2

1
  where n  is the arg min error from 

step 2b 

d. Update the data point weights: 
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n
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))(exp()(
)(

)()(

1


  where nZ  

normalize the equation over all data points i  

               Note that, in step 2b, if can’t find a classifier with less than a 50% error rate then we 
quit; we probably need better features. 
When the training algorithm just described is finished, the final strong classifier takes a new 

input vector x  and classifies it using a weighted sum over the learned weak classifier nh : 
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3.8 Random Trees 
Random trees can learn more than one class at the same time simply by collecting the class 
votes at the leaves of each of many trees and selecting the class receiving the maximum votes 
as the winner[1]. Regression is done by averaging the values across the leaves of the forest. 
Random trees consist of randomly perturbed decision trees. Random trees also have the 
potential for parallel implementation, even on non-shared memory systems. 
The basic system on which random trees are built is once again a decision tree. This decision 
tree is built all the way down until it’s pure. Random tree cause each tree to be different by 
randomly selecting a different feature subset of the total feature from which the  tree may 
learn at each node. 
 

3.9 Multilayer Perceptron; Backpropagation. 
The neuron is the fundamental cellular unit of the nervous systems and, in particular the brain. 
Each neuron is a simple micro-processing unit which receives and combines signals for many 
other neurons through input processes called dendrites[11]. If the combine signal is strong 
enough, it activate the firing of the neuron, which  produces an output signal; the path of the 



output signal is along a component of a cell call axon. This simple transfer of information is 
chemical in nature, but it has electrical side effects which can measure. 
 
3.9.1 Neural Networks 
In an artificial neural network, the unit analogous to the biological  neuron is referred to as a 
“processing element” A processing element has many input paths (dendrites) and combines, 
usually by a simple summation, the values of these input paths. The result is an internal activity 
level for the processing element. The combine input is then modified by a transfer function. 
This transfer function can be a threshold function which only passes information if the 
combined activity reach a certain level, or it can be a continuous function of the combine input. 

 
Figure 3.6  Schematic of an artificial neuron 
 
The output path of a processing element can be connected to input paths of other processing 
elements through connection weights which correspond to the synaptic strength of neural 
connections. Since each connection has a corresponding weights, the signals on the input lines 
to a processing element are modified by these weights prior to being summed. The summation 
function is a weighted summation. 
Processing elements are usually organized into groups called layers. A typical network consists 
of a sequence of layers with full or random connection between successive layers. There are 
typically two layers with connections to the outside world: An input buffer where data is 
presented to the network, and output buffer which holds the response of the network to a 
given input. Layers distinct from the input and output buffers are called hidden layers. 
 
Sigmoid, Tanh, and ReLU Activation function 
There are three major types of activation function that are used in practice that introduce 
nonlinearities in their computations: 
Sigmoid. The first of these is the sigmoid neuron, which uses the function 
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Intuitively, this means that when the logit or weighted sum of inputs is very small, the output of 
a logistic neuron is very close to 0. When the logit is very large, the output of the logistic neuron 
is close to 1 
Tanh. The tanh use a similar kind of s-shaped nonlinearity, but instead of ranging from 0 to 1, 
the output of tanh neurons range from -1 to 1. As one would expect, they use  
                         )tanh()( zzf          (3.24) 

Restrict Linear Unit (ReLU). A different kind of nonlinearity is used by the restricted linear unit 
(ReLU) neuron. It uses the function  
                       ),0max()( zzf       (3.25) 

That results in a characteristic hockey stick shaped. 
 
3.9.2 Softmax Output Layers 
There are times when we want our output vector to be a probability distribution over a set of 
mutually exclusive labels. Using a probability distribution gives us a better idea of how 
confident we are in our predictions. The output vector in this case has the following form    

 110 ,........, nppp  with n  the number of the processing element in the output layer. 

And 1
1

0






n

i

ip      (3.26) 

This is achieved by using a special output layer called a softmax  layer. Unlike in other kinds of 
layers, the output of a neuron in a softmax layer depends on the outputs of all of the other 
neurons in its layer. This is because we require the sum of all the outputs to be equal to 1. 

Letting iz  be the logit of the ith  softmax neuron, we can achieve this normalization by 

setting its output to[11]: 
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A strong prediction would have a single entry in the vector close to 1 while the remaining 
entries were close to 0. 
 
 3.9.3 Network Operation 
There are two main phases in the operation of a network, learning and recall. In the most 
network these are distinct. 
 
Learning is a process of adapting or modifying the connection weights in response to stimuli 
being presented at the input buffer. A stimulus presented at the output buffer corresponds to a 
desired response to a given input;  this desired response must be provided by a knowledgeable 
teacher. In such a case the learning is referred to as “supervise learning”. 
If the desired output is different from the input, the trained networks is referred to as hetero-
associative network. If, for all training examples, the desired output vector is equal to the input 



vector, the trained network is called auto-associative. If no desired output is shown, the 
learning is called unsupervised learning. 
 
A third kind of learning, falling between supervised and unsupervised learning, is reinforcement 
learning where an external teacher indicates only whether the response to an input is good or 
bad. In some instances, the network may only be graded after several input have been 
processed by the network. 
 
Whatever kind of learning is used, an essential characteristic of any network is its learning rule. 
The learning rule specifies how weights adapt in response to a learning example. 
 
3.9.4 MLP learning rule 
The multilayer perceptron is a neural network that is comprised of an input layer , an output 
layer and at least on hidden layer. There is no theoretical limit on the number of hidden layers.  
These network are also called feedforward networks. They operate by feeding data forwards 
along the interconnections from input layer, through the hidden layer to the output layer. 
The multilayer perceptron is a neural network that still ranks among top-performing classifiers, 
especially for text recognition. It can be rather slow in training because it uses gradient descent 
to minimize error by adjusting weighted connections between the numerical classification 
nodes within the layers. In the test mode it is quite fast. 
 
The following notation are used in order to described the learning rule. 

][s

jx  : the current output state of the jth  neuron in layer s  
][s

jiw : weight on connection joining ith  neuron in layer  1s  to jth  in layer s  
][s

jI : weighted summation of inputs to jth  neuron in layer s  

A back-propagation element therefore transfers its input as follows: 
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Where f  is  traditionally  the sigmoid function but can be any differentiable function. The 

sigmoid function is defined as 
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Backpropagating the local error 
Suppose that the network has some global error function E  associated with it which is a 
differentiable function of all the connection weights in the network. The actual error function is 
unimportant to understand the mechanism of back-propagation. The critical parameter that is 
passed back through the layers is defined by 
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Using the chain rule twice in succession gives the relationship between the local error at a 
particular processing element at level s and all the local errors at the level 1s  
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 If f  is the sigmoid function as defined , then its derivative can be expressed as a simple 

function of itself as follows: 

))(1)(()(' zfzfzf             (3.31) 

Therefore after combining the local error can be written as follows[11]: 
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Minimizing the Global error 

Given the current set of weights ][s

ijw , we need to determine how to increment or decrement 

them in order to decrease the global error. 
][][ s
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Where   is the learning rate. The partial derivative can be calculated from the local error. 
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After combining the two previous equation this gives 
]1[][][  s
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The Global Error function 
Suppose that a vector I is presented at the input edge layer of the network and suppose the 
desired output d  is specified. Let denote the actual output produced by the network with its 
current set of weights. Then a measure of the error in achieving that desired output is given by 
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The scale local error for each element of the output layer is given as follows[11]: 
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Summary of the Standard Back-Propagation Algorithm 
Given an input vector I  and desired output vector d do the following: 

1. Present I  to the input layer of the network and propagate it through to the output to 

obtain an output vector o. 

2.  As this information propagates through the network, it will also set all the summed 

input jI  and output states jx  for each processing element in the network. 

3. For each processing element in the output layer, calculate the scaled local error as given 

in [3.37] and then calculate the delta weight using [3.35] 



4. For each layer s , starting at the layer below the output layer and ending with the layer 

above the input, and for each processing element in the layer  s , calculate the scaled 

local error as given in [3.32] then calculate the delta rule using [3.35] 

5. Update all weights in the network by adding the delta weights to the corresponding 

previous weights. 

 

4.0  Conclusion 

This tutorial is an overview of the most popular machine learning algorithms. The part two of 
this tutorial will be on deep learning. 
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