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1.0 Introduction 

Robot manipulator consists of a series of link connected by joints to form a spatial mechanism. 

The joints are either revolute  (rotary) or prismatic (telescope). In recent years, improvement in 

electric motor technology, coupled with new designs such as direct drive arms, have led to a 

rapid increase in speed and load carrying capabilities of manipulators. However, this has meant 

that the flexibility of the nominally rigid link has become increasingly significant. 

Present generation manipulators are limited in their load carrying capacity by the requirement 

of rigidity. If the controller could compensate for link flexure, it would, in principle, possible to 

greatly increase the ratio of load to arm weight. 

There are also other advantages arising from the use of flexible link: 

 Lower energy consumption; lighter links have lower inertia and, therefore, require less 

power to produce the same acceleration as the rigid link with the same carrying 

capacity. 

 Smaller actuators required; the reduced power requirement means that smaller and 

generally cheaper actuators can be used. 

 Safer operation due to reduced inertia; in the event of collision. Less damage would be 

caused. 

 Compliant structure; flexible links introduced mechanical compliance into robot 

structure. This is useful for delicate assembly operation; the link themselves being used 

for force/torque sensing. 

Unfortunately, if the assumption of rigid link is relaxed, the equations describing the 

manipulator dynamic, become more complex. In addition to the gross motion of the arm, the 

deformational behavior of the individual links must be considered. The two effects interact 

further complicating the dynamics[1]. 

In this tutorial some of the techniques currently used for modeling and controlling flexible links 

robot will be presented. Two modeling method namely the assumed mode approach and the 

finite element method are presented in Section 2. Section 3 is concerned with control  

algorithms and we will conclude in section 4. 

 

 



 

2.0 Modeling 
2.1 Assume Mode Approach 

 

2.1.1 Flexible Arm Modeling 

 

Consider a uniform slender beam connected via a rigid hub to the armature of an electric 

motor; this beam also has a tip mass (payload) with inertia see Figure 2.1. the beam is assumed  

 
Figure 2.1: A Flexible link manipulator 

 

To be initially straight, and to satisfy the assumption of Euler-Bernouilly beam theory. Note that 

x  is  the distance along the length of the beam; l  is the length of the beam;   is the thickness 

of the beam; m is the mass per unit length; EI is the flexural rigidity of the beam; r  is the hub 

radius; hJ  is the hub inertia; M is the payload mass; J  is the payload inertia; bJ is the inertia 

of the beam about the motor armature. 

 

The displacement of the joints along the deformed profile of the beam is described in terms of 

radial and circumferential coordinates and is related to the angles of the rotation of the hub   

and the flexural displacement of the beam as follows: 

                                           )()(),(),( trxtxwtxy                                                    (2.1) 

This displacement can be expanded using the assumed mode approach[1]. If we choose the 

cantilever mode, the displacement of any point on the beam is represented by the summation 

                                   )()()()(),( trxtqxtxy ii                                                    (2.2) 

Where iq is purely a function of time and includes an arbitrary multiplicative constant and i , 

the mode shape, which is purely a function of the displacement along the beam and can be 

expressed as follows: 
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Using this displacement, the kinetic and potential energy are given as [1] 
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Define the Lagrangian to be: 
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the dynamic equation is given as: 
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for .....2,1,0i  and   the motor torque. Equation (2.3) yields an infinite set of couple second-

order differential equations. Retaining the first n  elastic modes and writing these equations in 

matrix form, we obtain 

                                                        QqKqM cc                                   (2.4) 
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Equation (2.5) can be transformed into the following state-space form[1]: 

                                                 BAxx                                                  (2.5) 
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The output equation is given as Cxz   in which  C depends on the choice of the desired 

outputs. For the three outputs: hub angle )),0()(( ' tyth  , tip position )),()(( tlytyt   and 

root strain ),,0()2()(( '' tyt    take the form: 
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With '  and "  are the first and second derivative. 

 

2.1.2 Two- Flexible Arm Modeling 

 

 

 
Figure 2.2: A two-flexible link manipulator 

 

Consider the two-link manipulator presented on Figure 2.2. Assume that 
1link  has a cross 

sectional area )( 11 xA , and a length 1l , with flexible mode represented by 111211 ,...., mqqq  

similarly that 2link  has cross sectional area )( 22 xA , with flexible mode 222221 ,...., mqqq  where  

mmm  21  the total number  of flexible mode, and YX   the stationary world frame and 1  

is the angle of the tangent at 0x  and with respect to axisX    and 2 is the angle that

axisx 2  makes relative to the slope of the end point of 
1link . The mode shape functions are 

assumed to be clamped at the actuator end (clamped-mass or clamped-free). 

Let us denote the description of a point on 
1link written in the YX   plane by[2] 
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Where )( 1T  is the rotation matrix of the 
11 yx   frame, i.e,  

                                                                                                  (2.8)

 

Therefore the kinetic energy due to 
1link is given by 
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Similarly the description of a point corresponding to 
2x  on the second link is given in the YX 

frame by 
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Hence the kinetic energy due to the second link is given as follows: 
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The hub kinetic energy is given by 
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The kinetic energy due to 
1M and 

1J which denote the mass and moment of inertia of the case 

and stator of the second motor is given by 
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And finally the payload kinetic energy is 
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The total kinetic energy is given as follows 
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The elastic potential energy is obtained from 
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Which can be written in matrix form 
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 E  is the modulus of elasticity of the material and )( 11 xI z ,  )( 22 xI z    are the area moments of 

inertia about the axis of rotation 1z  and 
2z   at 1x  and 

2x . 

Note that for a uniform manipulator the cross product terms are zero if orthogonal shape 

function (e.q clamp free) are used. 

If gravity is present, the potential energy due to gravity can also be added to eV . The dynamic 

equation is derive in the absence of gravity. Denoting the degree of freedom by: 
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The Lagrangian equation for the system is given by 
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From which the  system dynamic can be obtained using the Euler Lagrange equation 
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Where g  is the generalized vector of torques which for the case of clamped mode shape is 

given by 
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Where τ is the actuator torque at the joint, 22O  is a 22  matrix of zero elements. It follows that 

the dynamic equation can be written as follows: 
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Where the ith  element of  ),( zzV   is 

             2....,1,
2

1
),(

2

1










 





miz
z

M
zz

z

M
zezzV

i

T
m

j j

j

T

ii
                         (2.25) 

With ie  the unity vector, ),( zzV   containing the centrifugal and Coriollis terms and aK  is given 

by 
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mO 2 , is a m2 matrix of zero elements and 2mO , is a matrix of 2m zero elements and  mmK  is  an 

mm matrix of Kij  a generic stiffness constant elements. 

2.2 Finite Element method 

 

The overall finite element approach involves treating each link of the manipulator (say ilink ) as 

an assemblage of in   elements of length il . For each of these elements (say ij where subscript 

ij refers to the  jth  element of ilink ) the kinetic energy ijT  and potential energy ijV   are 

computed in terms of a suitably selected system of n  generalized variables that are used in 



order to compute the Lagrangian L  which in turn is used to derive the dynamic equations. The 

procedure can be described as follows[3]: 

 

1. Let 1L  and 1i  

2. Divide ilink  into in  elements of length il  

3. Compute ijT  and ijV  for the generic element ij  

4. Compute the link kinetic and potential energies by combining the finite element 

energies as follows: 
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5. Compute the Link Lagrangian as follows: iLLL   

6. 1 ii  

7. Is mi   where m is the number of link If no got to 2 if yes go to 8 

8. Use the Lagrangian to  the derive the dynamic equations as follows 
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9. Stop 

2.2.1 Kinetic Description 

 
Figure 2.3: Representation of an arbitrary point on a rigid link 

 

The general displacements of a point is described using Chasles theorem[6]. It defines an 

arbitrary displacement as a sum of the translation of a point and a rotation along the axis of 

rotation. According to Chasles theorem , the arbitrary displacement of a point can be defined as 

                                                 HuRr                                                                      (2.28) 

Where  Tzyx rrrr   is the global position vector of an arbitrary point,  Tzyx RRRR   

is the position vector of the body coordinate system. H  is the coordinate transformation 



matrix, and  zyx uuuu   is the local position vector defined with respect to the body 

coordinate system. The transformation matrix H  is defined as follows: 
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where ,,,, 3210   are the Euler parameters. These quantities are defined as 
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in which 
1v ,

2v  and 3v are components of the unit vector v  along the axis of rotation. v is the 

angle of rotation. 

 
Figure 2.4: Representation of an arbitrary point on a flexible link 

 
2.2.2 Kinetics of Flexible link 

 

The kinetic equations that can define an arbitrary displacement of a flexible link i is derived 

using floating reference frame formulation [6]. Floating reference frame formulation uses two 

sets of coordinates i.e., body reference coordinates and elastic coordinates. The body reference 

coordinates describe the position and orientation of body coordinate system iii ZYX ,,  with 



respect to the global coordinate system  ZYX ,, . The elastic coordinates describe the local 

displacements of flexible ilink   with respect to the body coordinate system iii ZYX ,, . 

 
Figure 2.5: Elastic coordinate on finite element 

 

The elastic deformations of flexible link are approximated using the finite element method to 

obtain finite set of elastic coordinates. The elastic coordinates of finite element shown in Figure 

2.5 is defined using element coordinate system ijijij ZYX ,,   with respect to body coordinate 

system iii ZYX ,, . The position vector of an arbitrary point on flexible ilink  is defined as 

                                                                        iiii uHRr                                     (2.31) 

where  Tzyxi RRRR   is the position vector of the body coordinate system iii ZYX ,, . iH  

is the transformation matrix defined using equation [6],and iu  is the local position vector 

defined with respect to iii ZYX ,, . For the flexible link, the local position vector iu  is defined as 

the sum of undeformed position vector and elastic deformation vector. The local position 

vector iu  is written as 
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where r

iu  is the undeformed position vector, and e

iu  is elastic deformation vector that is 

defined as 
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in which iS  is the shape function matrix, and e

iq  is the elastic coordinates vector[6]. The shape 

function iS  is defined as 
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u zyx   ;;  and l  is length of element, and zyx uuu ,,  are spatial coordinates 

along element axis. 

  

The velocity vector of an arbitrary point on the flexible ilink  is given as follows: 
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where i is angular velocity vector defined in body coordinate system iii ZYX ,, . It is expressed 

as 
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Equation [2.35] can be written as follows 

                                                                      iii qLr                                                        (2.38) 

Where       iiiiii SHGuHIL ~  and iq   is generalized velocities of flexible ilink  defined in 

absolute coordinate   Te

iiii qRq   system. 

The acceleration vector of an arbitrary point on the flexible link i is obtained by differentiating 

equation [2.38]. It is written as 
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With  Te

iiii qRq    in which iq  is generalized accelerations of the flexible ilink  defined in 

absolute coordinate system. 

 

2.2.1 Dynamic System Modeling 

 

The dynamics equations of motion are derived using the principle of virtual work in absolute 

coordinate system[6]. The equations of motion can be rearranged as follows 
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ijQ  are respectively the quadratic velocity term and 

elastic forces acting on element ij . 
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with ijD is the differential operator, ijS  is the element shape function matrix and ijE  is the elastic 

coefficient. 

The equations of motion of the flexible ilink  is defined as 
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,,,  . m number of finite elements per link. 

The equations of motion in absolute coordinate system for an n links manipulator is given as 

follows[6] 

                                                    sve QQQqM                                            (2.42) 
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Where  e

iQ  are the external forces applied on flexible ilink . v

iQ  and s

iQ are respectively the 

quadratic velocity term and elastic forces acting on flexible ilink .                                        

3.0 Control 
 

Motion control of robot manipulator is important in order to achieve high speed operations. In 

this section few model based tracking algorithm for Flexible link manipulator will be presented. 

The object of the control is to follow the desired trajectory in addition to minimizing vibrations 

of the end-effector. 

 

The design of controller for flexible link manipulators is difficult due to its under actuation and 

non-minimal phase nature of the dynamic. Under actuation is caused by the fact that a finite 

number of actuators is used to control infinite degrees of freedom that arise due to link 

flexibility. Non-minimum phase nature occurs because of non-collocation of actuators and 

sensors. 

 

The equations that describe the dynamic of flexible link manipulator can be written as follows: 

 

                                BKqqDqqqVqqM   ),()(                                                    (3.1) 

 

where  Tfr qqq   are rigid and elastic coordinates of the manipulator; 
rq  is the 1n vector 

that represents rigid body rotations of the n  manipulator joints, and fq  is the 1m  vector that 

represent elastic coordinates of the link. The number of elastic coordinates depends on the 

number of finite elements used to discretize the link or the number of flexible modes that 

remain after truncation of the model, when using the assumed mode method. )(qM  is the 

Inertia matrix, qqqV ),(  is the Coriolis and centrifugal vector, qD   is the frictional and damping 

forces, Kq  represents the internal forces due to body elasticity. Input matrix B  maps the 

external torque into generalized forces of the system. 

The equations of motion explicitly written in rigid and elastic coordinates are given as follows: 
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The actuators are assumed to be placed at manipulator joints. Thus, the input matrix B  is 

expressed as nnr IB   and mmfB  0 . The model inversion of equation [6], that maps input 

torque and desired output trajectory, depends on the rigid and elastic coordinates of the 

system. If the desired output trajectory is the tip trajectory, the system is unstable due to non-

minimum phase nature. 



 

 

3.1 One flexible Link H  Controller Design 

This section present a controller designed using H   design techniques. H  is a norm that is 

defined as follows 

   )(sup)(sup
0)Re(




jFsFF
s 


  in the case of a transfer function, it can be view as the 

peak on the Bode magnitude plot of )( jF . We are interested in designing a controller that 

minimize this peak. 

The model of a single flexible link robot manipulator is linear. The state space representation is 

given as follows: 
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where CBA ,,  are given by equations (2.5), (2.6). The transfer matrix is given as follows: 

                                                   BASICsP 1)()(                                                               (3.4) 

Defined the multiplicative unstructured uncertainties as follows: 
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Figure 3.1 H controller design 

Where 1


 and )(0 sP  is the nominal transfer matrix defined for the nominal value of the 

hub and the load inertia  00 , th JJ  as follows ),;()( 000 th JJsPsP  , d is a disturbance, e  output 

error. 

We are interested in synthesising a controller )(sK  that minimize the H  mixed sensitivity 

norm defined as follows: 
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Where PKLo   is the output loop transfer matrix, 1)(  oo LIS is the output sensitivity 

matrix, 1)(  oooo LILSIT  is the output complementary sensitivity matrices all of them 

defined in the nominal condition and 
21,WW , eW , dW ,  are frequency-dependent scaling 

matrices[12]. The solution of this problem is a dynamic compensator whose transfer matrix is 

given by )(sK . 

3.2 Lyapunov Based Nonlinear Controller 

Consider the dynamic equation (2.46). Lyapunov method will be used in order to derive the 

control law. Let’s define the position error along the trajectory as follows: 
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The error dynamics of the system in term of 
fr ss ,  is given as follows. 
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Where 
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 (2.49) 

It can be shown, by using Lyapunov method, that the following control law[6]: 
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Will stabilized the Flexible link robot system . The architecture of this controller is given in 

Figure [3.2] 

 

 

Figure 3.2  A nonlinear control architecture. 

 

3.3 Adaptive controller 

 

The dynamics of the flexible manipulator[2.46] can be is expressed in terms of linear type 

parametric model as follows: 
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where 
1Z and 

2Z  are 
1rn , 

2rm  regression matrix for appropriate 0, 21 rr  ; and  
21, are 

unknown constant parameters. 

 

It can be shown, by using Lyapunov method, that the following control law[6]: 
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And the following adaptation algorithm. 

                                                rsZK 111
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                                                 fsZK 222
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                                                (3.11) 

Will stabilized the Flexible link robot system. The architecture of this controller is given in Figure 

[3.3] 

 

 
Figure 3.3  An Adaptive Control Architecture. 

 

4.0 Conclusion 

In this tutorial an overview of the control of flexible link manipulator is presented. Modeling of 

robots that exhibit link flexibilities are presented using assumed mode method and finite 

element methods. H  robust control strategies, Nonlinear as well as adaptive control 

strategies were also presented. 
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