
http://www.profiansmith.com

Solutions to Sample Exam questions - by Professor lan Smith Downloaded from www.profiansmith.com

The sample exam questions are provided in a separate downloadable file.

Q1. (a)

Sieve (mm)	Mass (\mathbf{g})	\% retained	\% passing
37.5	0	0.0	100.0
20.0	2	1.2	98.8
14.0	5.4	3.3	95.5
10.0	6.2	3.7	91.8
6.3	28.3	17.1	74.7
3.35	32.5	19.6	55.0
1.18	54	32.6	22.4
0.60	21	12.7	9.7
0.212	10.2	6.2	3.5
0.063	1.6	1.0	2.5
pan	4.2	2.5	

(10 marks)
(b)

From PSD:

$$
\begin{aligned}
& \mathrm{D}_{60}=4 \\
& \mathrm{D}_{10}=0.64 \\
& C_{u}=D_{60} / D_{10}=4 / 0.64=\underline{\underline{6.25}}
\end{aligned}
$$

(c)
(i) $\quad p_{b}=\frac{M}{V}=\frac{2.035 \times 10^{-3}}{1.05 \times 10^{-3}}=\underline{\underline{1.938 \mathrm{Mg} / \mathrm{m}^{3}}}$
(ii) $w=\frac{\text { mass of water }}{\text { mass of dry soil }}=\frac{2.035-1.85}{1.85}=\underline{\underline{10 \%}}$
(iii) $\rho_{d}=\frac{\rho_{b} \times 100}{100+w}=\frac{1938}{110}=\underline{\underline{1.762 \mathrm{Mg} / \mathrm{m}^{3}}}$
(iv) $p_{d}=\frac{p_{w} G_{s}}{1+e}$ (N.B. $p_{w}=$ density of water $\left.=1 \mathrm{Mg} / \mathrm{m}^{3}\right)$

$$
\Rightarrow 1.762=\frac{2.70}{1+e}
$$

$$
e=1.53-1=\underline{\underline{0.53}}
$$

(v) $\quad \rho_{b}=\frac{G_{s}+e S_{r}}{1+e}$

$$
\begin{aligned}
& 1.938=\frac{2.70+0.53 S_{r}}{1.53} \\
& 0.53 S_{r}=(1.938 \times 1.53)-2.7 \\
& S r=\frac{0.265}{0.53}=0.50 \equiv 50 \%
\end{aligned}
$$

Q2.

(a)
(i) Consider two $30 \mathrm{~m} \times 4 \mathrm{~m}$ rectangles meeting over point A :

$$
\begin{aligned}
& m=b / z=4 / 3=1.33 \\
& n=t / z=30 / 3=10
\end{aligned}
$$

From chart, $\mathrm{I}_{\mathrm{o}}=0.222$
=> applied stress $=2 \times 0.222 \times 40=17.8 \mathrm{kPa}$
(ii) Consider four $15 \mathrm{~m} \times 4 \mathrm{~m}$ rectangles meeting over point A :

$$
\begin{aligned}
& m=b / z=4 / 3=1.33 \\
& n=t / z=15 / 3=5
\end{aligned}
$$

From chart, $\mathrm{I}_{\mathrm{o}}=0.222$
=> applied stress $=4 \times 0.222 \times 40=35.5 \mathrm{kPa}$
(15 marks)
(b) $\quad \rho_{i}=\frac{p B\left(1-v^{2}\right) N_{p}}{E}=\frac{40 \times 8 \times 0.75 \times 0.94}{5 \times 10^{6}}=45.1 \mathrm{~mm}$

Q3.

SLIDING

Combination 1:

From Table 5.1: $\gamma_{\mathrm{G} ; \text { unfav }}=1.35 ; \gamma_{\mathrm{G} ; \text { fav }}=1.0 ; \gamma_{\mathrm{Q}}=1.5 ; \gamma_{i}=1.0$.

Design $\phi=30^{\circ}$ (since partial factor of safety for phi = 1.0.)
From chart, $\mathrm{K}_{\mathrm{a}}=0.27$

Pressure at base of wall $=\mathrm{K}_{\mathrm{a}} \times \gamma \times \mathrm{h}=0.27 \times 19 \times 5=25.7 \mathrm{kPa}$
$P_{a}=0.5 \times 25.7 \times 5=64.2 \mathrm{kN}$
Design action, $\mathrm{P}_{\mathrm{a} ; \mathrm{d}}=64.2 \times 1.35=86.7 \mathrm{kN}$

Weight of wall, $W=1 / 2(1.7+3.0) \times 5 \times 24=282.0 \mathrm{kN}$
Design weight, $\mathrm{W}_{\mathrm{d}}=282 \times 1.0=\underline{282} \mathrm{kN}$

Resistance to sliding, $R_{d}=W_{d} \times \tan 30^{\circ}($ since $\delta / \phi=1.0)=282 \tan 30=162.8 \mathrm{kN}$
Since $R_{d}>P_{a ; d}$ limit state requirement is satisfied.
Over design factor $=162.8 / 86.7=\underline{1.88}$

Combination 2:

From Table 5.1: : $\gamma_{\mathrm{G} ; \text { fav }}=1.0 ; \gamma_{\mathrm{G} ; \text { unfav }}=1.0 ; \gamma_{\mathrm{Q}}=1.3 ; \gamma_{\dot{i}}=1.25$

Design $\phi=24.8^{\circ}$ (since partial factor of safety for $\mathrm{phi}=1.25$.)
From chart, $\mathrm{K}_{\mathrm{a}}=0.34$

Pressure at base of wall $=\mathrm{K}_{\mathrm{a}} \times \gamma \times \mathrm{h}=0.34 \times 19 \times 5=32.3 \mathrm{kPa}$
$P_{a}=0.5 \times 32.3 \times 5.0=80.7 \mathrm{kN}$
Design action, $\mathrm{P}_{\mathrm{a} ; \mathrm{d}}=80.7 \times 1.0=80.7 \mathrm{kN}$

Weight of wall, $\mathrm{W}=1 / 2(1.7+3.0) \times 5 \times 24=282.0 \mathrm{kN}$
Design weight, $\mathrm{W}_{\mathrm{d}}=282 \times 1.0=\underline{282} \mathrm{kN}$

Resistance to sliding, $\mathrm{R}_{\mathrm{d}}=\mathrm{W}_{\mathrm{d}} \mathrm{x} \tan 24.8^{\circ}($ since $\delta / \phi=1.0)=282 \tan 24.8=130.3 \mathrm{kN}$
Since $R_{d}>P_{a ; d}$ limit state requirement is satisfied.
Over design factor $=130.3 / 80.7=\underline{1.61}$

OVERTURNING

Combination 1:

From Table 5.1: $\gamma_{\mathrm{G} ; ~ u n f a v}=1.35 ; \gamma_{\mathrm{G} ; \mathrm{fav}}=1.0 ; \gamma_{\mathrm{Q}}=1.5 ; \gamma_{i}=1.0$.

Design $\phi=30^{\circ}$ (since partial factor of safety for phi = 1.0.)
From chart, $\mathrm{K}_{\mathrm{a}}=0.27$
Consider wall as comprising 2 sections:

Area 1: $\mathrm{W}_{\mathrm{d}}=1 / 2 \times 1.3 \times 5 \times 24 \times \gamma_{\mathrm{G} ; \text { fav }}=78.0 \mathrm{kN}$
Area 2: $W_{d}=1.7 \times 5 \times 24 \times \gamma_{\mathrm{G} ; \text { fav }}=204.0 \mathrm{kN}$
Active thrust:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a}}=0.5 \times 25.7 \times 5=64.2 \mathrm{kN} \\
& \text { Design action, } \mathrm{P}_{\mathrm{a} ; \mathrm{d}}=64.2 \times 1.35=86.7 \mathrm{kN}
\end{aligned}
$$

The effect of the actions is to cause the overturning moment about the toe of the wall. This is resisted by the stabilising moment from the self-weight of the wall.

Action	Magnitude of Action (kN)	Lever arm (m)	Moment (kNm)
Stabilising:			
Area 1	78.0	$0.67 \times 1.3=0.88$	68.6
Area 2	204.0	$1.3+(1.7 / 2)=2.15$	438.6
		Total:	507.2
Destabilising:			
Pa_{a}	86.7	$5 / 3=1.67$	144.5
		Total:	144.5

Over design factor $=507.2 / 144.5=\underline{3.51}$
(10 marks)

Combination 2:

From Table 5.1: : $\gamma_{G} ;$ fav $=1.0 ; \gamma_{G} ;$ unfav $=1.0 ; \gamma_{Q}=1.3 ; \gamma_{i}=1.25$

Design $\phi=24.8^{\circ}$ (since partial factor of safety for phi $=1.25$.)
From chart, $\mathrm{K}_{\mathrm{a}}=0.34$
Weight and Moments of Wall same as Combination 1 (since $\gamma_{\mathrm{G} ;}$ fav $=1.0$ for both)

$$
\text { Mstb;d = } 507.2 \mathrm{kNm}
$$

Active thrust:
Pressure at base of wall $=\mathrm{K}_{\mathrm{a}} \times \gamma \times \mathrm{h}=0.34 \times 19 \times 5=32.3 \mathrm{kPa}$
$\mathrm{P}_{\mathrm{a}}=0.5 \times 32.3 \times 5.0=80.7 \mathrm{kN}$
Design action, $\mathrm{P}_{\mathrm{a} ; \mathrm{d}}=80.7 \times 1.0=80.7 \mathrm{kN}$

$$
M_{\mathrm{dst} ; \mathrm{d}}=80.7 \times 1.67=134.8 \mathrm{kNm}
$$

Over design factor $=507.2 / 134.8=\underline{3.76}$

