

http://www.profiansmith.com

Solutions to Sample Exam questions – by Professor Ian Smith Downloaded from <u>www.profiansmith.com</u>

The sample exam questions are provided in a separate downloadable file.

Q1. (a)
-------	----

Sieve (mm)	Mass (g)	% retained	% passing
37.5	0	0.0	100.0
20.0	2	1.2	98.8
14.0	5.4	3.3	95.5
10.0	6.2	3.7	91.8
6.3	28.3	17.1	74.7
3.35	32.5	19.6	55.0
1.18	54	32.6	22.4
0.60	21	12.7	9.7
0.212	10.2	6.2	3.5
0.063	1.6	1.0	2.5
pan	4.2	2.5	

(b)

From PSD:

$$D_{60} = 4$$

$$D_{10} = 0.64$$

$$C_{u} = \frac{D_{60}}{D_{10}} = \frac{4}{0.64} = \frac{6.25}{6.25}$$

(2 marks)

www.profiansmith.com

(i)
$$\rho_{\delta} = \frac{M}{V} = \frac{2.035 \times 10^{-3}}{1.05 \times 10^{-3}} = \underline{1.938 \text{ Mg/m}}^3$$

(ii)
$$w = \frac{mass \ of \ water}{mass \ of \ dry \ soil} = \frac{2.035 - 1.85}{1.85} = \underline{10\%}$$

(iii)
$$\rho_d = \frac{\rho_b \times 100}{100 + w} = \frac{1938}{110} = \underline{1.762 \text{Mg/m}^3}$$

(iv)
$$P_d = \frac{\rho_w G_s}{1+e}$$
 (N.B. $\rho_w = \text{ density of water} = 1 \text{ Mg/m}^3$)

$$\Rightarrow 1.762 = \frac{2.70}{1+e}$$

$$e = 1.53 - 1 = 0.53$$

(v)
$$\rho_b = \frac{G_s + eS_r}{1 + e}$$

 $1.938 = \frac{2.70 + 0.53S_r}{1.53}$
 $0.53S_r = (1.938 \ge 1.53) - 2.7$
 $Sr = \frac{0.265}{0.53} = 0.50 = 50\%$

(13 marks)

(Total 25 marks)

Ian Smith: Geotechnical and Educational Consultancy

www.profiansmith.com

Q2.

(a)

(i) Consider two 30 m x 4 m rectangles meeting over point A:

m = b / z = 4 / 3 = 1.33
n = l / z = 30 / 3 = 10
From chart,
$$I_a = 0.222$$

=> applied stress = 2 x 0.222 x 40 = 17.8 kPa

(ii) Consider four 15 m x 4 m rectangles meeting over point A:

From chart, $I_{a} = 0.222$

=> applied stress = 4 x 0.222 x 40 = <u>35.5 kPa</u>

(15 marks)

(b)
$$\rho_i = \frac{pB(1-v^2)N_p}{E} = \frac{40 \times 8 \times 0.75 \times 0.94}{5 \times 10^6} = 45.1 \text{mm}$$

(5 marks)

(Total 20 marks)

Q3.

SLIDING

Combination 1:

From Table 5.1: $\gamma_{G; unfav} = 1.35$; $\gamma_{G; fav} = 1.0$; $\gamma_Q = 1.5$; $\gamma_{*} = 1.0$.

Design ϕ = 30° (since partial factor of safety for phi = 1.0.)

From chart, $K_a = 0.27$

Pressure at base of wall = $K_a \times \gamma \times h = 0.27 \times 19 \times 5 = 25.7 \text{ kPa}$

P_a = 0.5 x 25.7 x 5 = 64.2 kN

Design action, $P_{a; d} = 64.2 \times 1.35 = 86.7 \text{ kN}$

Weight of wall, $W = \frac{1}{2}(1.7 + 3.0) \times 5 \times 24 = 282.0 \text{ kN}$

Design weight, $W_d = 282 \times 1.0 = 282 \text{ kN}$

Resistance to sliding, $R_d = W_d x \tan 30^\circ$ (since $\delta/\phi = 1.0$) = 282 tan 30 = <u>162.8 kN</u> Since $R_d > P_{a;d}$ limit state requirement is satisfied.

Over design factor = 162.8 / 86.7 = 1.88 (10 marks)

Combination 2:

From Table 5.1: : $\gamma_{G; fav}$ = 1.0; $\gamma_{G; unfav}$ = 1.0; γ_Q = 1.3; γ_v = 1.25

Design ϕ = 24.8° (since partial factor of safety for phi = 1.25.)

From chart, $K_a = 0.34$

Pressure at base of wall = $K_a \times \gamma \times h = 0.34 \times 19 \times 5 = 32.3 \text{ kPa}$

P_a = 0.5 x 32.3 x 5.0 = 80.7 kN

Design action, P_{a; d} = 80.7 x 1.0 = <u>80.7 kN</u>

Ian Smith: Geotechnical and Educational Consultancy

Weight of wall, $W = \frac{1}{2}(1.7 + 3.0) \times 5 \times 24 = 282.0 \text{ kN}$

Design weight, $W_d = 282 \times 1.0 = 282 \text{ kN}$

Resistance to sliding, $R_d = W_d x \tan 24.8^\circ$ (since $\delta/\phi = 1.0$) = 282 tan 24.8 = <u>130.3 kN</u>

Since $R_d > P_{a; d}$ limit state requirement is satisfied.

Over design factor = 130.3 / 80.7 = <u>1.61</u>

(5 marks)

OVERTURNING

Combination 1:

From Table 5.1: $\gamma_{G; unfav} = 1.35$; $\gamma_{G; fav} = 1.0$; $\gamma_Q = 1.5$; $\gamma_{v'} = 1.0$.

Design ϕ = 30° (since partial factor of safety for phi = 1.0.)

From chart, $K_a = 0.27$

Consider wall as comprising 2 sections:

Area 1: $W_d = \frac{1}{2} \times 1.3 \times 5 \times 24 \times \gamma_{G; fav} = 78.0 \text{ kN}$ Area 2: $W_d = 1.7 \times 5 \times 24 \times \gamma_{G; fav} = 204.0 \text{ kN}$

Active thrust:

 $P_a = 0.5 \times 25.7 \times 5 = 64.2 \text{ kN}$ Design action, $P_{a; d} = 64.2 \times 1.35 = 86.7 \text{ kN}$

The effect of the actions is to cause the overturning moment about the toe of the wall. This is resisted by the stabilising moment from the self-weight of the wall.

Action	Magnitude of Action (kN)	Lever arm (m)	Moment (kNm)
Stabilising:			
Area 1	78.0	0.67 x 1.3 = 0.88	68.6
Area 2	204.0	1.3 + (1.7/2) = 2.15	438.6
		Total:	507.2
Destabilising:			
Pa	86.7	5/3 = 1.67	144.5
		Total:	144.5

Over design factor = 507.2 / 144.5 = 3.51

(10 marks)

Combination 2:

From Table 5.1: : $\gamma_{G; fav}$ = 1.0; $\gamma_{G; unfav}$ = 1.0; γ_Q = 1.3; $\gamma_{v'}$ = 1.25

Design ϕ = 24.8° (since partial factor of safety for phi = 1.25.)

From chart, $K_a = 0.34$

Weight and Moments of Wall same as Combination 1 (since $\gamma_{G; fav}$ = 1.0 for both)

Active thrust:

Pressure at base of wall = $K_a \times \gamma \times h = 0.34 \times 19 \times 5 = 32.3 \text{ kPa}$ P_a = 0.5 x 32.3 x 5.0 = 80.7 kN Design action, P_{a; d} = 80.7 x 1.0 = <u>80.7 kN</u>

M_{dst;d} = 80.7 x 1.67 = <u>134.8 kNm</u>

Over design factor = 507.2 / 134.8 = 3.76

(5 marks)

(Total 30 marks)

Ian Smith: Geotechnical and Educational Consultancy

www.profiansmith.com